Math 2550 Homew.rk 8 Solutions

HW 8 Solutions

$$\bigcirc (a) A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$
Characteristic polynomial
det $(A - \lambda I_2) = det \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$
 $= det \begin{pmatrix} 3 - \lambda & 0 \\ 8 & -1 - \lambda \end{pmatrix}$
 $= (3 - \lambda)(-1 - \lambda) - (0)(8)$
 $= (3 - \lambda)(-1 - \lambda) - (0)(8)$
 $= (\lambda - 3)(\lambda + 1)$ I factured
out two (-1)'s
and they concelled
 $and they concelled$
 $and they conceled$
 $and they concelled$
 an

Solving:

$$\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} 9 \\ 6 \end{pmatrix} = 3 \begin{pmatrix} 9 \\ 6 \end{pmatrix} \\
\begin{pmatrix} 3 & 4 & 0 & 6 \\ 8 & 4 & -6 \end{pmatrix} = \begin{pmatrix} 39 \\ 3b \end{pmatrix} \\
\begin{pmatrix} 0 \\ 8a & -4b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Need to solve:

$$8a-4b=0$$

$$0=0$$

$$\frac{1}{8}R_{1} \rightarrow R_{1}$$
or equivalently:

$$a-\frac{1}{2}b=0$$

$$0=0$$

The solutions are:

So, $\vec{X} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{1}{2}t \\ t \end{pmatrix} = t \begin{pmatrix} y_2 \\ 1 \end{pmatrix}$ gives all the elements in the eigenspace $E_3(A)$. So, a basis for $E_3(A)$ is $\begin{pmatrix} y_2 \\ 1 \end{pmatrix}$

and dim
$$(E_3(A)) = 1$$
.
So, $\lambda = 3$ has geometric multiplicity 1.
Basis for eigenspace $E_{-1}(A)$ for $\lambda = -1$:
We need to solve $A\vec{x} = -\vec{x}$.
Solving: $\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} 9 \\ 6 \end{pmatrix} = -\begin{pmatrix} 9 \\ 6 \end{pmatrix}$
 $\begin{pmatrix} 3a + 0b \\ 8a - b \end{pmatrix} = \begin{pmatrix} -a \\ -b \end{pmatrix}$
 $\begin{pmatrix} 4a \\ 8a \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

So, a basis for E. (A) is
$$\binom{n}{1}$$

and dim $(E_{-1}(A)) = 1$ and
the geometric multiplicity of $A = -1$
is 1.
Summary table for $A = \binom{3 \ 0}{8 \ -1}$
Eigenvalue λ algebraic basis for geometric
multiplicity $E_{\lambda}(A)$ multiplicity
 $\lambda = 3$ | $\binom{1}{2}$ | 1
 $\lambda = -1$ | $\binom{0}{1}$ |

$$\widehat{O}(b) A = \begin{pmatrix} 10 & -9 \\ y & -2 \end{pmatrix}$$

$$\frac{characteristic polynomial of A}{det (A - \lambda I_2) = det \left(\begin{pmatrix} 10 & -9 \\ y & -2 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) }{= det \begin{pmatrix} 10 - \lambda & -9 \\ y & -2 - \lambda \end{pmatrix} }$$

$$= (10 - \lambda)(-2 - \lambda) - (4)(-9)$$

$$= -20 - 10\lambda + 2\lambda + \lambda^{2} + 36$$

$$= \lambda^{2} - 8\lambda + 16$$

$$= (\lambda - 4)^{2}$$
Thus, $\lambda = 4$ is the unly eigenvalue with algebraic multiplicity Z.
basis for Eq (A) for eigenvalue $\lambda = 4$
We must solve $A\vec{x} = 4\vec{x}$.
Solving: $\begin{pmatrix} 10 - 9 \\ 4 & -2b \end{pmatrix} = \begin{pmatrix} 4n \\ 4b \end{pmatrix}$

$$\begin{pmatrix} 10n - 9b \\ 4n - 2b \end{pmatrix} = \begin{pmatrix} 4n \\ 4b \end{pmatrix}$$

r

$$\begin{pmatrix} 6a - 9b \\ 4a - 6b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

We must solve

$$\begin{bmatrix}
6a - 9b = 0 \\
4a - 6b = 0
\end{bmatrix}$$

We have

$$\begin{pmatrix} 6 & -9 & | & 0 \\ 4 & -6 & | & 0 \end{pmatrix} \xrightarrow{\frac{1}{6}R_1 \to R_1} \begin{pmatrix} 1 & -3/2 & | & 0 \\ 4 & -6 & | & 0 \end{pmatrix}$$

 $-4R_1 + R_2 \to R_2 \begin{pmatrix} 1 & -3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$

We get:

$$\begin{array}{c} \alpha - \frac{3}{2}b = 0 \\ 0 = 0 \end{array}$$
 leading: a free : b

So,
$$b = t$$

 $a = \frac{3}{2}b = \frac{3}{2}t$
Thus, all the elements of Ey(A) are
of the form
 $\vec{x} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3/2 & t \\ t \end{pmatrix} = t \begin{pmatrix} 3/2 \\ l \end{pmatrix}$

Thus, a basis for Eq(A) is
$$\binom{3/2}{1}$$

So, dim (Eq(A)) = | and the
geometric multiplicity of λ =4 is 1.
Summary table for A:
 $\frac{1}{2} \frac{1}{2} \frac{1}{2$

$$(i) (c) A = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$

$$\frac{characteristic p. lynomial of A}{det (A - \lambda I_2) = det (\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix})}$$

$$= det \begin{pmatrix} 5 - \lambda & 0 \\ 0 & 5 - \lambda \end{pmatrix}$$

$$= (5 - \lambda)(5 - \lambda) - (0)(0)$$

$$= (5 - \lambda)(5 - \lambda) - (0)(0)$$

$$= (5 - \lambda)(5 - \lambda) - (0)(0)$$

$$= (\lambda - 5)(\lambda - 5) \leftarrow 1 \text{ for each the only for each the two (-1)} \text{ for each the only eigenvalue}$$

$$= (\lambda - 5)^2 \qquad \text{cancelled out}$$
Thus, $\lambda = 5$ is the only eigenvalue of A and it has algebraic multiplicity Z.
basis for $E_s(A)$ for $\lambda = 5$:
We need to solve $A = 5 = 5 = 5$

Solving:
$$\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 5 \begin{pmatrix} a \\ b \end{pmatrix}$$

 $\begin{pmatrix} 5a + 0b \\ 0a + 5b \end{pmatrix} = \begin{pmatrix} 5a \\ 5b \end{pmatrix}$
 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

We get

$$0 = 0$$
 \leftarrow no leading variables
 $0 = 0$ \leftarrow a,b are both free!

Solutions are:

$$a = t$$

 $b = u$
Thus, all elements of $E_s(A)$ are of
the form
 $\vec{x} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} t \\ u \end{pmatrix} = \begin{pmatrix} t \\ c \end{pmatrix} + \begin{pmatrix} 0 \\ u \end{pmatrix} = t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + u \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
Thus, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ span $E_s(A)$ and since
they are linearly independent (it's the

standard basis) they form a basis
for
$$E_5(A)$$
.
Thus, dim $(E_5(A)) = 2$ and the
geometric multiplicity of $\lambda = 5$ is 2.
Summary tuble for $A = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$
eigenvalue λ algebraic basis for geometric
multiplicity $E_{\lambda}(A)$ multiplicity
 $\lambda = 5$ 2 $\binom{1}{0}, \binom{0}{1}$ 2

$$(I)(d) \quad A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(I)(d) \quad A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(I)(d) \quad A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= det \quad \begin{pmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 2 \\ 0 & 0 & -\lambda \end{pmatrix} \quad \begin{pmatrix} +1 & +1 \\ -1 & +1 \end{pmatrix}$$

$$= (-\lambda) \begin{bmatrix} -\lambda & 2 \\ 0 & -\lambda \end{bmatrix} - 0 + 0$$

$$(I)(-\lambda) = (-\lambda) \begin{bmatrix} -\lambda & 2 \\ 0 & -\lambda \end{bmatrix}$$

$$= (-\lambda) \begin{bmatrix} (-\lambda)(-\lambda) - (2)(0) \end{bmatrix}$$

$$= -\lambda^{3} = -(\lambda - 0)^{3}$$

The only eigenvalue is
$$\lambda = 0$$
 and
it has algebraic multiplicity 3.
basis for $E_0(A)$ for $\lambda = 0$:
Solving: $A\vec{x} = 0 \cdot \vec{x}$
 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ b \\ c \end{pmatrix} = 0 \begin{pmatrix} 0 \\ b \\ c \end{pmatrix}$
 $\begin{pmatrix} b \\ c \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$

giving:

$$b = 0$$
 leading: b, c
 $c = 0$ free: c
 $o = 0$

$$\begin{aligned}
\bigoplus(e) \quad A &= \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix} \\
\xrightarrow{\text{charactuishic poly for } A} \\
\frac{\text{det}(A - \lambda I_3) &= \text{det} \left(\begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix} \right) \\
&= \text{det} \begin{pmatrix} 4 - \lambda \\ 2 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -\lambda \end{pmatrix} \\
&= \text{cot}(2 \\ 1 \\ 0 \end{pmatrix} \\
&= -0 + (3 - \lambda) \begin{pmatrix} 4 - \lambda & 1 \\ 1 \\ 4 - \lambda \end{pmatrix} - 0 \\
&\begin{pmatrix} 4 - \lambda & 1 \\ 2 \\ -\lambda \end{pmatrix} \\
&= (3 - \lambda) \begin{pmatrix} 4 - \lambda & 1 \\ 2 \\ -\lambda \end{pmatrix} - 0 \\
&\begin{pmatrix} 4 - \lambda & 1 \\ 2 \\ -\lambda \end{pmatrix} \\
&= (3 - \lambda) \begin{pmatrix} 4 - \lambda & 1 \\ 2 \\ -\lambda \end{pmatrix} - 0 \\
&\begin{pmatrix} 4 - \lambda & 1 \\ 2 \\ -\lambda \end{pmatrix} \\
&= (3 - \lambda) \begin{pmatrix} 4 - \lambda & 1 \\ 2 \\ -\lambda \end{pmatrix} - 0 \\
&= (3 - \lambda) \begin{bmatrix} 4 - \lambda & (4 - \lambda) - (1)(1) \end{bmatrix} \\
&= (3 - \lambda) \begin{bmatrix} 1 & 0 & 0 \\ -4 & \lambda - 4 & \lambda \end{pmatrix} \\
&= (3 - \lambda) \begin{bmatrix} \lambda^2 - 8 & \lambda + 15 \end{bmatrix} \\
&= (3 - \lambda) (\lambda - 3) (\lambda - 5)
\end{aligned}$$

$$= -(\lambda - 3)^{2}(\lambda - 5)$$
So the eigenvalues are $\lambda = 3, 5,$
 $\lambda = 3$ has algebraic multiplicity 2.
 $\lambda = 5$ has algebraic multiplicity 1.
basis for $E_{3}(A)$ for $\lambda = 3$:

$$\begin{cases}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{cases} \begin{pmatrix} a & +c \\ c \\ a & +c \\ a & +c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ c \\ c \\ c \\ a & +c \\ c \\ a & +c \\ c \\ a & +c \\ c \\ c \\ a & +c = 0 \\ a & +c & +c \\ a &$$

This gives

$$a + c = 0$$
 leading: a
 $0 = 0$ free: b, c
 $0 = 0$

Solutions:

$$b = t$$

$$c = u$$

$$a = -c = -u$$
Thus, every \vec{x} in $E_3(A)$ is of the form

$$\vec{x} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -u \\ t \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ t \\ c \end{pmatrix} + \begin{pmatrix} -u \\ 0 \\ u \end{pmatrix}$$

$$= t \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix} + u \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
Thus, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ s pan $E_3(A)$.
Since these two vectors are not multiples
of each other they form a basis

for E₃(A). Thus, dim (E₃(A)) = 2
and
$$\lambda = 3$$
 has geometric multiplicity 2.

basis for E₅(A) for $\lambda = 5$:

 $\begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 5 \begin{pmatrix} a \\ b \\ c \end{pmatrix}$
 $\begin{pmatrix} 4a & +c \\ 2a+3b+2c \\ a & +4c \end{pmatrix} = \begin{pmatrix} 5a \\ 5b \\ c \end{pmatrix}$
 $\begin{pmatrix} 4a & +c \\ 2a+3b+2c \\ a & +4c \end{pmatrix} = \begin{pmatrix} 5a \\ 5b \\ 5c \end{pmatrix}$
 $\begin{pmatrix} -a & +c \\ 2a-2b+2c \\ a & -c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ c \end{pmatrix}$

Need to solve
 $\begin{pmatrix} -a & +c \\ 2a-2b+2c = 0 \\ a & -c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ c \end{pmatrix}$
Need to solve
 $\begin{pmatrix} -a & +c \\ 2a-2b+2c = 0 \\ a & -c = 0 \end{pmatrix}$
olving: $\begin{pmatrix} -1 & 0 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 1 & 0 & -1 & 0 \end{pmatrix} \xrightarrow{-R_1 + R_1} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 2 & -2 & 2 & 0 \\ 1 & 0 & -1 & 0 \end{pmatrix}$

$$\begin{array}{c} -2R_{1}+R_{2}+R_{1} \\ \hline \\ \hline \\ -R_{1}+R_{3}+R_{3} \end{array} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & -2 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}R_{2}+R_{2}} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Need to solve:

$$a -c = 0$$
 leading: a, b
 $b - 2c = 0$ free: c
 $v = 0$

Solutions are:

$$c = t$$

 $b = 2c = 2t$
 $a = c = t$
Thus every \vec{x} in $E_s(A)$ is of the form
 $\vec{x} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} t \\ 2t \\ t \end{pmatrix} = t \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
Thus, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ is a basis for $E_s(A)$
and dim $(E_s(A)) = 1$ and
 $\lambda = 5$ has geometric multiplicity 1.

Summary table for
$$A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix}$$

Thus, the eigenvalues are
$$\lambda = 1, 2, 3$$

each with algebraic multiplicity 1.

basis for
$$E_1(A)$$
 for $\lambda = 1$:
Need to solve $A\vec{x} = 1\cdot\vec{x}$
Solving: $\begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 1\cdot\begin{pmatrix} b \\ c \\ c \end{pmatrix}$
 $\begin{pmatrix} 4 & a & 1 \\ -2 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 1\cdot\begin{pmatrix} b \\ c \\ c \end{pmatrix}$
 $\begin{pmatrix} 4 & a & 1 & c \\ -2 & a & +c \\ -2 & a & +c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ c \end{pmatrix}$
 $\begin{pmatrix} 3a & 1 & c \\ -2a & +c \\ -2a & c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ c \end{pmatrix}$

This gives:

$$\begin{array}{cccc}
\alpha & \pm \frac{1}{3}c = 0 & \text{leading: } a, c \\
c = 0 & \text{free: } b \\
0 = 0
\end{array}$$

Solutions:

b=t
c=0
a=-1/3c=0
Thus, all the vectors
$$\vec{x}$$
 in $E_1(A)$ are of the
furn $\vec{x} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix} = t \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
So, $\begin{pmatrix} 0 \\ c \end{pmatrix}$ is a basis for $E_1(A)$ and
dim $(E_1(A)) = 1$ and $\lambda = 1$ has geometric
multiplicity 1.
basis for $E_2(A)$ for $\lambda = 2$?
Solving: $A\vec{x} = 2\vec{x}$
 $\begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 2 \begin{pmatrix} b \\ c \end{pmatrix}$

$$\begin{pmatrix} 4\alpha + c \\ -2\alpha + b \\ -2\alpha + c \end{pmatrix} = \begin{pmatrix} 2\alpha \\ 2b \\ 2c \end{pmatrix}$$
$$\begin{pmatrix} 2\alpha + c \\ -2\alpha - b \\ -2\alpha - c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Need to solve:

$$2a + c = 0$$

$$-2a - b = 0$$

$$-2a - c = 0$$

$$S_{0}(v) = \frac{S_{0}(v)}{(-2 - 1 - 0)} = \frac{R_{1} + R_{2} + R_{2}}{(-2 - 1 - 0)} = \frac{R_{1} + R_{3} + R_{3}}{(-2 - 1 - 1)} = \frac{R_{1} + R_{3} + R_{3}}{(-2 - 1 - 1)} = \frac{R_{1} + R_{3} + R_{3}}{(-2 - 1 - 1)} = \frac{R_{1} + R_{2}}{(-2 - 1 -$$

We get:

$$a + \frac{1}{2}c = 0$$
 |eading: a,b
 $b - c = 0$ free: c
 $u = 0$

Solution: c = t b = c = t $\alpha = -\frac{1}{2}c = -\frac{1}{2}t$

Thus all the vectors
$$\bar{x}$$
 in $E_2(A)$ are of
the turn $\bar{x} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}t \\ t \end{pmatrix} = t \begin{pmatrix} -\frac{1}{2}t \\ t \end{pmatrix}$
So, $\begin{pmatrix} -\frac{1}{2}t \\ t \end{pmatrix}$ is a basis for $E_2(A)$ and
dim $(E_2(A)) = 1$ and $\lambda = 2$ has geometric
multiplicity 1.
basis for $E_3(A)$ for $\lambda = 3$:
Solving: $A\bar{x} = 3\bar{x}$
 $\begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 3 \begin{pmatrix} a \\ b \\ c \end{pmatrix}$
 $\begin{pmatrix} 4a & tc \\ -2a + bc \\ -2a & +cc \end{pmatrix} = \begin{pmatrix} 3a \\ 3b \\ 3c \end{pmatrix}$
 $\begin{pmatrix} a & tc \\ -2a - 2b \\ -2a & -2c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
Need to solve
 $\begin{bmatrix} -a & -2b \\ -2a & -2c \\ -2a \\ -$

$$\begin{aligned}
S_{s} \text{Uing:} \\
\begin{pmatrix} 1 & 0 & 1 & 0 \\ -2 & -2 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{pmatrix} \xrightarrow{2R_{1}+R_{2} \rightarrow R_{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & -2 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\xrightarrow{-\frac{1}{2}R_{2} \rightarrow R_{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\end{aligned}$$

This gives:

$$\begin{array}{ccc} a & +c = 0 \\ b - c = 0 \\ 0 = 0 \end{array}$$
 leading: a, b

Solution is

$$c = t$$

 $b = c = t$
 $\alpha = -c = -t$

2) Suppose
$$\vec{x}$$
 is an eigenvalue of
A with eigenvalue λ .
Then, $A\vec{x} = \lambda\vec{x}$.
So, $A^2\vec{x} = A(A\vec{x}) = A(\lambda\vec{x})$
 $= \lambda(A\vec{x})$
 $= \lambda \cdot \lambda \vec{x}$
 $= \lambda^2 \vec{x}$.
And, $A^2\vec{x} = A(A^2\vec{x}) = A(\lambda^2\vec{x})$
 $= \lambda^2(A\vec{x})$
 $= \lambda^2(\lambda\vec{x})$
 $= \lambda^2(\lambda\vec{x})$
 $= \lambda^3\vec{x}$
Carry on in this fashion we will
get that $A^2\vec{x} = \lambda \cdot \vec{x}$
for $n = 1, 2, 3, 4$...

(3) Recall that $E_{\lambda}(A) = \{ \vec{x} \mid A \vec{x} = \lambda \vec{x} \text{ and } \vec{x} \in \mathbb{R}^n \}$ (i) Note that $\overrightarrow{AD} = \overrightarrow{D} = O \cdot \overrightarrow{O}$. Thus, \vec{O} is in $E_{\lambda}(A)$, \leftarrow Since $A\vec{O} = 0.\vec{O}$ (ii) Suppose X1 and X2 are in E2(A). Then, $A\vec{\chi}_1 = \lambda\vec{\chi}_1$ and $A\vec{\chi}_2 = \lambda\vec{\chi}_2$. (matrix multiplication property Thus, $A(\vec{x}_1 + \vec{x}_2) \stackrel{\checkmark}{=} A \stackrel{\neg}{x}_1 + A \stackrel{\neg}{x}_2$ $= \lambda \overline{\chi}_1 + \lambda \overline{\chi}_2$ $= \lambda(\vec{x}_1 + \vec{X}_2)$ Thus, \vec{x}_1, \vec{x}_2 are in $E_\lambda(A)$. $\leftarrow \begin{array}{l} \sin(\ell) \\ A(\vec{x}_1 + \vec{x}_2) \\ = \lambda(\vec{x}_1 + \vec{x}_1) \end{array}$ (m) Suppose X, is in E_X(A) and t is a real number.

Then, $A_{X_3} = \lambda_{X_3}$ since $X_3 \in E_{\lambda}(A)$. Matrix multiplication ςυ, $A(\chi \chi_3) = \alpha(A \chi_3)$ $= \chi(\lambda \chi_3)$ $= \lambda (\chi \chi_{3})$ Thus, $A(\chi \vec{x}_3) = \lambda(\chi \vec{x}_3)$ So, XX3 is in EX(A). By (i), (ii), (iii), we know that EX(A) is a subspace of IR".