Math 2550
Homework 8
Solutions

HeW 8 Solutions
(1) (a) $A=\left(\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right)$

Characteristic polynomial

$$
\begin{aligned}
& \text { Characteristic polynomial } \\
& \operatorname{det}\left(A-\lambda I_{2}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
&=\operatorname{det}\left(\begin{array}{cc}
3-\lambda & 0 \\
8 & -1-\lambda
\end{array}\right) \\
&=(3-\lambda)(-1-\lambda)-(0)(8) \\
&=(3-\lambda)(-1-\lambda) \\
&=(\lambda-3)(\lambda+1) \quad \begin{array}{l}
\text { I factored } \\
\text { out two }(-1)^{\prime} \text { 's } \\
\text { and they cancelled } \\
\text { each other out }
\end{array}
\end{aligned}
$$

Thus, $\lambda=3,-1$ are the eigenvalues of A. $\lambda=3$ has algebraic multiplicity 1 .
$\lambda=-1$ has algebraic multiplicity 1.

Basis for eigenspace $E_{3}(A)$ for $\lambda=3$:
We must find a basis for all solutions to $\overrightarrow{A x}=3 \vec{x}$.

Solving:

$$
\begin{aligned}
& \left(\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right)\binom{a}{b}=3\binom{a}{b} \\
& \binom{3 a+0 b}{8 a-b}=\binom{3 a}{3 b} \\
& \binom{0}{8 a-4 b}=\binom{0}{0}
\end{aligned}
$$

Need to solve:

$$
\begin{gathered}
\begin{array}{r}
8 a-4 b=0 \\
0=0
\end{array} \\
\text { or equivalently: } \\
\begin{array}{r}
a-\frac{1}{2} b=0 \\
0=0
\end{array}
\end{gathered}
$$

The solutions are:

$$
\begin{aligned}
& b=t \\
& a=\frac{1}{2} b=\frac{1}{2} t
\end{aligned}
$$

So,

$$
\vec{x}=\binom{a}{b}=\binom{\frac{1}{2} t}{t}=t\binom{1 / 2}{1}
$$

gives all the elements in the eigenspace $E_{3}(A)$.
So, a basis for $E_{3}(A)$ is $\binom{1 / 2}{1}$
and $\operatorname{dim}\left(E_{3}(A)\right)=1$.
So, $\lambda=3$ has geometric multiplicity 1 .
Basis for eigenspace $E_{-1}(A)$ for $\lambda=-1$:
We need to solve $A \vec{x}=-\vec{x}$.
Solving:

$$
\begin{aligned}
& \left(\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right)\binom{a}{b}=-\binom{9}{b} \\
& \binom{3 a+0 b}{8 a-b}=\binom{-9}{-b} \\
& \binom{4 a}{8 a}=\binom{0}{0}
\end{aligned}
$$

Need to Solve

$$
\begin{array}{ll}
4 a & =0 \\
8 a & =0
\end{array}
$$

So, $a=0$ and $b=t$ is free.
Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \vec{x}=\binom{a}{b}=\binom{0}{t}=t\binom{0}{1} .
\end{aligned}
$$

gives all the elements in the eigenspace $E_{-1}(A)$.

So, a basis for $E_{-1}(A)$ is $\binom{0}{1}$ and $\operatorname{dim}\left(E_{-1}(A)\right)=1$ and
the geometric multiplicity of $\lambda=-1$ is 1.

Summary table for $A=\left(\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right)$

Eigenvalue λ	algebraic multiplicity	basis for $E_{\lambda}(A)$	geometric multiplicity
$\lambda=3$	1	$\binom{1 / 2}{1}$	1
$\lambda=-1$	1	$\binom{0}{1}$	1

(1) (b) $A=\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)$
characteristic polynomial of A

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{2}\right) & =\operatorname{det}\left(\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
10-\lambda & -9 \\
4 & -2-\lambda
\end{array}\right) \\
& =(10-\lambda)(-2-\lambda)-(4)(-9) \\
& =-20-10 \lambda+2 \lambda+\lambda^{2}+36 \\
& =\lambda^{2}-8 \lambda+16 \\
& =(\lambda-4)^{2}
\end{aligned}
$$

Thus, $\lambda=4$ is the only eigenvalue with algebraic multiplicity 2 .
basis for $E_{4}(A)$ for eigenvalue $\lambda=4$
We must solve $A \vec{x}=4 \vec{x}$.
Solving: $\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)\binom{a}{b}=4\binom{a}{b}$

$$
\binom{10 a-9 b}{4 a-2 b}=\binom{4 a}{4 b}
$$

$$
\binom{6 a-9 b}{4 a-6 b}=\binom{0}{0}
$$

We must solve

$$
\begin{aligned}
& 6 a-9 b=0 \\
& 4 a-6 b=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { We have } \\
& \left.\begin{array}{rl|c|c}
6 & -9 & 0 \\
4 & -6 & 0
\end{array}\right) \xrightarrow{\frac{1}{6} R_{1} \rightarrow R_{1}}\left(\begin{array}{cc|c}
1 & -3 / 2 & 0 \\
4 & -6 & 0
\end{array}\right) \\
& \\
& \xrightarrow{-4 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & -3 / 2 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

We get:

$$
\begin{array}{rlrl}
a-\frac{3}{2} b & =0 & & \text { leading: } a \\
0 & =0 & \text { free: } b
\end{array}
$$

So,

$$
\begin{aligned}
& b=t \\
& a=\frac{3}{2} b=\frac{3}{2} t
\end{aligned}
$$

Thus, all the elements of $E_{4}(A)$ are of the form

$$
\vec{x}=\binom{a}{b}=\left(\begin{array}{cc}
3 / 2 & t \\
t
\end{array}\right)=t\binom{3 / 2}{1}
$$

Thus, a basis for $E_{4}(A)$ is $\binom{3 / 2}{1}$
So, $\operatorname{dim}\left(E_{4}(A)\right)=1$ and the
geometric multiplicity of $\lambda=4$ is 1 .
Summary table for A :

eigenvalue λ	algebraic inutiplicity	basis for $E_{\lambda}(A)$	geometric multiplicity
$\lambda=4$	2	$\binom{3 / 2}{1}$	1

(1) (c) $\quad A=\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$
characteristic polynomial of A

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{2}\right) & =\operatorname{det}\left(\left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
5-\lambda & 0 \\
0 & 5
\end{array}\right) \\
& =(5-\lambda)(5-\lambda)-(0)(0) \\
& =(5-\lambda)(5-\lambda) \\
& =(\lambda-5)(\lambda-5) \quad \begin{array}{c}
\text { I factored out } \\
(-1) \text { from each } \\
\text { term and the } \\
\text { two (-1)'s } \\
\text { cancelled out }
\end{array} \\
& =(\lambda-5)^{2} \quad
\end{aligned}
$$

Thus, $\lambda=5$ is the only eigenvalue of A and it has algebraic multiplicity 2 .
basis for $E_{s}(A)$ for $\lambda=5$:
We need to solve $A \vec{x}=5 \vec{x}$

Solving:

$$
\begin{aligned}
& \left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right)\binom{a}{b}=5\binom{a}{b} \\
& \binom{5 a+0 b}{0 a+5 b}=\binom{5 a}{5 b} \\
& \binom{0}{0}=\binom{0}{0}
\end{aligned}
$$

We get

$$
\begin{aligned}
& 0=0 \\
& 0=0
\end{aligned} \leftarrow \leftarrow \begin{aligned}
& \text { no leading variables } \\
& a, b \text { are both tree! }
\end{aligned}
$$

Solutions ace:

$$
\begin{aligned}
& a=t \\
& b=u
\end{aligned}
$$

Thus, all elements of $E_{s}(A)$ are of

$$
\begin{aligned}
& \text { The form } \\
& \vec{x}=\binom{a}{b}=\binom{t}{u}=\binom{t}{0}+\binom{0}{u}=t\binom{1}{0}+u\binom{0}{1} \\
& \text { thus, }
\end{aligned}
$$ the form

Thus, $\binom{1}{0},\binom{0}{1}$ span $E_{s}(A)$ and since they are linearly independent (it's the
standard basis) they form a basis for $E_{5}(A)$.
Thus, $\operatorname{dim}\left(E_{5}(A)\right)=2$ and the geometric multiplicity of $\lambda=5$ is 2 .

Summary table for $A=\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$

eigenvalue λ	algebraic multiplicity	basis fur $E_{\lambda}(A)$	geometric multiplicity
$\lambda=5$	2	$\binom{1}{0},\binom{0}{1}$	2

$$
\text { (1)(d) } A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

characteristic poly of A

$$
\left.=(-\lambda) \underbrace{\left(\left.\begin{array}{cc}
-\lambda & 2 \\
0 & -\lambda \\
0 & 0
\end{array} \right\rvert\,-\lambda\right.}_{\left(\left.\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda
\end{array} \right\rvert\,\right.} \right\rvert\,)-0+0
$$

$$
\begin{aligned}
& =(-\lambda)[(-\lambda)(-\lambda)-(2)(0)] \\
& =-\lambda^{3}=-(\lambda-0)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(A-\lambda I_{3}\right)=\operatorname{det}\left(\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right)
\end{aligned}
$$

The only eigenvalue is $\lambda=0$ and it has algebraic multiplicity 3 .
basis for $E_{0}(A)$ for $\lambda=0$:
Solving: $\quad \overrightarrow{A x}=0 \cdot \vec{x}$

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& \left(\begin{array}{c}
b \\
z \\
c \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Need to solve:

$$
\begin{aligned}
\begin{aligned}
& b \\
& 2 c=0 \\
& 0= \\
&= \\
&\left(\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned} \xrightarrow{\frac{1}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

giving:

$$
\begin{aligned}
& n g: 0 \\
& \begin{aligned}
b & =0 \\
0 & =0
\end{aligned} \quad \text { free: } c
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& a=t \\
& b=0 \\
& c=0
\end{aligned}
$$

So every element \vec{x} of $E_{0}(A)$ is of the form $\vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}t \\ 0 \\ 0\end{array}\right)=t\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
Thus, $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is a basis for $E_{0}(A)$
and $\operatorname{dim}\left(E_{0}(A)\right)=1$ and $\lambda=0$
has geometric multiplicity 1.
Summary table for $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)$

eigenvalue λ	algebraic multiplicity	basis for $E_{\lambda}(A)$	geometric multiplicity
$\lambda=0$	3	$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$	

(1) (e)

$$
A=\left(\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right)
$$

characteristic poly for A

$$
\frac{\text { characteristic poly for }}{\operatorname{det}}\left(A-\lambda I_{3}\right)=\operatorname{det}\left(\left(\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right)
$$

$$
=-0+(3-\lambda) \underbrace{\left|\begin{array}{ccc}
4-\lambda & 1 \\
1 & 4-\lambda
\end{array}\right|-0}_{\left(\begin{array}{ccc}
4-\lambda & 6 & 1 \\
2 & 3-\lambda & 2 \\
1 & 0 & 4-\lambda
\end{array}\right)}
$$

$$
=(3-\lambda)[(4-\lambda)(4-\lambda)-(1)(1)]
$$

$$
=(3-\lambda)\left[16-4 \lambda-4 \lambda+\lambda^{2}-1\right]
$$

$$
=(3-\lambda)\left[\lambda^{2}-8 \lambda+15\right]
$$

$$
=(3-\lambda)(\lambda-3)(\lambda-5)
$$

$$
=-(\lambda-3)^{2}(\lambda-5)
$$

So the eigen salves are $\lambda=3,5$,
$\lambda=3$ has algebraic multiplicity 2 .
$\lambda=5$ has algebraic multiplicity 1.
basis for $E_{3}(A)$ for $\lambda=3$:
Solving:

$$
\begin{aligned}
& A \vec{x}=3 \vec{x} \\
&\left(\begin{array}{ccc}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=3\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
&\left(\begin{array}{cc}
4 a & +c \\
2 a+3 b+2 c \\
a & +4 c
\end{array}\right)=\left(\begin{array}{l}
3 a \\
3 \\
3 \\
3 c
\end{array}\right) \\
&\left(\begin{array}{cc}
a & +c \\
2 a & +2 c \\
a & +c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Need to solve

$$
\begin{aligned}
a+c & =0 \\
2 a+2 c & =0 \\
a+c & =0
\end{aligned}
$$

Solving:

$$
\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
2 & 0 & 2 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \xrightarrow[-R_{1}+R_{3} \rightarrow R_{3}]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This gives

$$
\begin{aligned}
a \quad+c & =0 \\
0 & =0 \\
0 & =0
\end{aligned}
$$

leading: a
free: b, c

Solutions:

$$
\begin{aligned}
& b=t \\
& c=u \\
& a=-c=-u
\end{aligned}
$$

Thus, every \vec{x} in $E_{3}(A)$ is of the form

$$
\begin{aligned}
& \text { Thus, every } \\
& \vec{x}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-u \\
t \\
u
\end{array}\right)=\left(\begin{array}{c}
0 \\
t \\
0
\end{array}\right)+\left(\begin{array}{c}
-u \\
0 \\
u
\end{array}\right) \\
&=t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+u\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Thus, $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ span $E_{3}(A)$.
Since these two vectors are net multiples of each other they form a basis
for $E_{3}(A)$. Thus, $\operatorname{dim}\left(E_{3}(A)\right)=2$ and $\lambda=3$ has geometric multiplicity 2.
basis for $E_{S}(A)$ for $\lambda=5$:
Solving:

$$
\begin{aligned}
& A \vec{x}=5 \vec{x} \\
& \left(\begin{array}{ccc}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=5\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& \left(\begin{array}{cc}
4 a+c \\
2 a+3 b+2 c \\
a & +4 c
\end{array}\right)=\left(\begin{array}{l}
5 a \\
5 b \\
5 c
\end{array}\right) \\
& \left(\begin{array}{cc}
-a & +c \\
2 a-2 b+2 c \\
a & -c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Need to solve

$$
\begin{aligned}
-a+c & =0 \\
2 a-2 b+2 c & =0 \\
a-c & =0
\end{aligned}
$$

Solving: $\left(\begin{array}{ccc|c}-1 & 0 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 1 & 0 & -1 & 0\end{array}\right) \xrightarrow{-R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}1 & 0 & -1 & 0 \\ 2 & -2 & 2 & 0 \\ 1 & 0 & -1 & 0\end{array}\right)$

$$
\xrightarrow[-R_{1}+R_{3} \rightarrow R_{3}]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & -2 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{-\frac{1}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Need to solve:
a

$$
-c=0
$$

leading: a, b

$$
b-2 c=0
$$

free: c

$$
0=0
$$

Solutions are:

$$
\begin{aligned}
& c=t \\
& b=2 c=2 t \\
& a=c=t
\end{aligned}
$$

Thus every \vec{x} in $E_{S}(A)$ is of the form

$$
\vec{x}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
t \\
2 t \\
t
\end{array}\right)=t\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

Thus, $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ is a basis for $E_{s}(A)$
and $\operatorname{dim}\left(E_{s}(A)\right)=1$ and $\lambda=5$ has geometric multiplicity 1 .

Summary table for $A=\left(\begin{array}{lll}4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4\end{array}\right)$

eigenvalue λ	algebraic multiplicity	basis for $E_{\lambda}(A)$	geometric multiplicity
$\lambda=3$	2	$\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$	2
$\lambda=5$	1	$\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$	1

(1) (d) $A=\left(\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)$
chasacteristic polynomial of A

$$
\begin{aligned}
& \operatorname{det}\left(A-\lambda I_{3}\right)=\operatorname{det}\left(\left(\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-0+(1-\lambda) \underbrace{\left.\begin{array}{cc}
4-\lambda & 1 \\
-2 & 1-\lambda
\end{array} \right\rvert\,}_{\left(\begin{array}{ccc}
4-\lambda & \phi & 1 \\
-2 & 1+\lambda & 0 \\
-2 & b & 1-\lambda
\end{array}\right)}-0 \\
& =(1-\lambda)[(4-\lambda)(1-\lambda)-(1)(-2)] \\
& =(1-\lambda)\left[4-4 \lambda-\lambda+\lambda^{2}+2\right] \\
& =(1-\lambda)\left[\lambda^{2}-5 \lambda+6\right] \\
& =(1-\lambda)(\lambda-3)(\lambda-2) \\
& =-(\lambda-1)(\lambda-2)(\lambda-3)
\end{aligned}
$$

Thus, the eigenvalues are $\lambda=1,2,3$ each with algebraic multiplicity 1.
basis for $E_{1}(A)$ for $\lambda=1$:
Need to solve $A \vec{x}=1 \cdot \vec{x}$
Solving: $\left(\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=1 \cdot\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{c}
4 a+c \\
-2 a+b \\
-2 a+c
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& \left(\begin{array}{c}
3 a+c \\
-2 a+ \\
-2 a
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Need to solve

$$
\begin{aligned}
& 3 a+c=0 \\
& -2 a=0 \\
& -2 a=0 \\
& \left(\begin{array}{ccc|c}
3 & 0 & 1 & 0 \\
-2 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0
\end{array}\right) \xrightarrow{1 / 3 R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & 0 & 1 / 3 & 0 \\
-2 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0
\end{array}\right) \xrightarrow[2 R_{1}+R_{3} \rightarrow R_{3}]{2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 1 / 3 & 0 \\
0 & 0 & 2 / 3 & 0 \\
0 & 0 & 2 / 3 & 0
\end{array}\right) \\
& \xrightarrow[3 / 2 R_{3} \rightarrow R_{3}]{3 / 2 R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \xrightarrow{-R_{2}+R_{1} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

This gives:

$$
\begin{array}{rlr}
a+\frac{1}{3} c & =0 \\
c & =0 \\
u & =0
\end{array} \quad \begin{aligned}
& \text { leading: } a, c \\
&
\end{aligned}
$$

Solutions:

$$
\begin{aligned}
& b=t \\
& c=0 \\
& a=-1 / 3 c=0
\end{aligned}
$$

Thus, all the vectors \vec{x} in $E_{1}(A)$ are of the form $\vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}0 \\ t \\ 0\end{array}\right)=t\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
So, $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ is a basis for $E_{1}(A)$ and $\operatorname{dim}\left(E_{1}(A)\right)=1$ and $\lambda=1$ has geometric multiplicity 1 .
basis for $E_{2}(A)$ for $\lambda=2$:
Solving: $\overrightarrow{A x}=2 \vec{x}$

$$
\left(\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=2\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
4 a+c \\
-2 a+b \\
-2 a+c
\end{array}\right)=\left(\begin{array}{l}
2 a \\
2 b \\
2 c
\end{array}\right) \\
& \left(\begin{array}{c}
2 a+c \\
-2 a-b \\
-2 a
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Need to solve:

$$
\left\{\begin{array}{r}
2 a+c=0 \\
-2 a-b=0 \\
-2 a-c=0
\end{array}\right.
$$

Solving:

$$
\begin{aligned}
& \text { Solving: } \\
& \left(\begin{array}{cc|c}
2 & 0 & 1 \\
-2 & -1 & 0 \\
-2 & 0 & -1
\end{array}\right) \xrightarrow[0]{R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
2 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow[-R_{3} \rightarrow R_{3} \rightarrow R_{3}]{\frac{1}{2} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & 0 & 1 / 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

We get:

$$
\begin{aligned}
\begin{array}{l}
\text { get: } \\
+\frac{1}{2} c=0 \\
b-c=0 \\
u=0
\end{array} & \text { leading: } a, b \\
&
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& c=t \\
& b=c=t \\
& a=-\frac{1}{2} c=-\frac{1}{2} t
\end{aligned}
$$

Thus all the vectors \vec{x} in $E_{2}(A)$ are of the form $\vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{cc}-\frac{1}{2} t \\ t \\ t\end{array}\right)=t\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$
So, $\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$ is a basis for $E_{2}(A)$ and $\operatorname{dim}\left(E_{2}(A)\right)=1$ and $\lambda=2$ has geometric multiplicity 1.
basis for $E_{3}(A)$ for $\lambda=3$:
Solving: $A \vec{x}=3 \vec{x}$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=3\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& \left(\begin{array}{cc}
4 a & +c \\
-2 a+b \\
-2 a & +c
\end{array}\right)=\left(\begin{array}{l}
3 a \\
3 b \\
3 c
\end{array}\right) \\
& \left(\begin{array}{cc}
a & +c \\
-2 a-2 b \\
-2 a & -2 c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Need to solve

$$
\left[\begin{array}{rl}
a & +c
\end{array}=0\right.
$$

Solving:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
-2 & -2 & 0 & 0 \\
-2 & 0 & -2 & 0
\end{array}\right) \xrightarrow[2 R_{1}+R_{3} \rightarrow R_{3}]{2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & -2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow{-\frac{1}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \text { This gives: }
\end{aligned}
$$

$$
\begin{aligned}
a+c & =0 \\
b-c & =0 \\
0 & =0
\end{aligned} \quad \text { free: } \quad \begin{aligned}
& \text { leading: } a, b \\
&
\end{aligned}
$$

Solution is

$$
\begin{aligned}
& c=t \\
& b=c=t \\
& a=-c=-t
\end{aligned}
$$

Thus, every \vec{x} in $E_{3}(A)$ has the form

$$
\vec{x}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-t \\
t \\
t
\end{array}\right)=t\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
$$

So, $\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$ is a basis for $E_{3}(A)$ and $\operatorname{dim}\left(E_{3}(A)\right)=1$ and geometric multiplicity of $\lambda=3$ is 1 .

Summary table for $A=\left(\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)$

eigenvalue λ	algebraic multiplicity	basis for $E_{\lambda}(A)$	geometric multiplicity
$\lambda=1$ 1$\left(\begin{array}{c}0 \\ 1 \\ 0\end{array}\right)$	1		
$\lambda=2$	1	$\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$	1
$\lambda=3$	1	$\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$	1

(2) Suppose \vec{x} is an eigenvalue of A with eigenvalue λ.
Then, $A \vec{x}=\lambda \vec{x}$.
So,

$$
\begin{aligned}
& A \vec{x}=\lambda x \\
& A^{2} \vec{x}=A(A \vec{x})=A(\lambda \vec{x}) \\
&=\lambda(A \vec{x}) \\
&=\lambda \cdot \lambda \vec{x} \\
&=\lambda^{2} \vec{x}
\end{aligned}
$$

And,

$$
\begin{aligned}
& =\lambda x \\
A^{3} \vec{x}=A\left(A^{2} \vec{x}\right) & =A\left(\lambda^{2} \vec{x}\right) \\
& =\lambda^{2}(A \vec{x}) \\
& =\lambda^{2}(\lambda \vec{x}) \\
& =\lambda^{3} \vec{x}
\end{aligned}
$$

Carry on in this fashion we will get that $A^{n} \vec{x}=\lambda^{n} \vec{x}$ for $n=1,2,3,4, \ldots$
(3) Recall that

$$
E_{\lambda}(A)=\left\{\vec{x} \mid A \vec{x}=\lambda \vec{x} \text { and } \vec{x} \in \mathbb{R}^{n}\right\}
$$

(i) Note that $\overrightarrow{A O}=\vec{O}=0 \cdot \overrightarrow{0}$.

Thus, \vec{O} is in $E_{\lambda}(A), \leftarrow$ Since $\overrightarrow{A D}=0 \cdot \overrightarrow{0}$
(ii) Suppose \vec{x}_{1} and \vec{x}_{2} are in $E_{\lambda}(A)$.

Then, $A \vec{x}_{1}=\lambda \vec{x}_{1}$ and $A \vec{x}_{2}=\lambda \vec{x}_{2}$.]
Thus,
matrix multiplication property

$$
\begin{aligned}
A\left(\vec{x}_{1}+\vec{x}_{2}\right) & =A \vec{x}_{1}+\overrightarrow{A \vec{x}_{2}} \\
& =\lambda \vec{x}_{1}+\lambda \vec{x}_{2} \\
& =\lambda\left(\vec{x}_{1}+\vec{x}_{2}\right)
\end{aligned}
$$

Thus, \vec{x}_{1}, \vec{x}_{2} are in $E_{\lambda}(A) \leftarrow \begin{aligned} & \sin \left(\vec{x}_{1}+\vec{x}_{2}\right) \\ & A\left(\vec{x}_{1}+\vec{x}_{2}\right) \\ & =\lambda\left(x^{2}\right.\end{aligned}$
(iii) Suppose \vec{x}_{3} is in $E_{\lambda}(A)$ and α is a real number.

Then, $\vec{A}_{3}=\lambda \vec{x}_{3}$ since $\vec{x}_{3} \in E_{\lambda}(A)$.
So,

$$
\begin{aligned}
A\left(\alpha \vec{X}_{3}\right) & =\alpha\left(A \vec{x}_{3}\right) \\
& =\alpha\left(\lambda \vec{X}_{3}\right) \\
& =\lambda\left(\alpha \vec{x}_{3}\right)
\end{aligned}
$$

Thus, $A\left(\alpha \vec{x}_{3}\right)=\lambda\left(\alpha \vec{x}_{3}\right)$
So, $\alpha \vec{x}_{3}$ is in $E_{\lambda}(A)$.
By $(i),(i i),(i i i)$, we know that $E_{\lambda}(A)$ is a subspace of \mathbb{R}^{n}.

